Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.842
Filtrar
1.
Ultrason Sonochem ; 105: 106868, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581798

RESUMO

The use of extracts rich in bioactive compounds is becoming increasingly common in the food, cosmetics, and pharmaceutical industries for the production of functional products. Araticum is a potential fruit to be analyzed due to its content of phenolic compounds, carotenoids and vitamins, with antioxidant properties. Therefore, this study aimed to investigate the effect of ultrasound on total phenolic compounds, total carotenoids, ascorbic acid, color, turbidity and rheology in araticum juice. Response surface methodology based on a central composite design was applied. Araticum juice was subjected to sonication at amplitude levels ranging from 20 to 100 % of the total power (400 W) at a constant frequency of 20 kHz for different durations (2 to 10 min). Morphological analysis was conducted to observe microscopic particles, and viscosity and suitability to rheological models (Newtonian, Power Law, and Herschel-Bulkley) were assessed. The ultrasonic probe extraction method was compared to the control juice. According to the responses, using the desirability function, the optimal conditions for extraction were determined to be low power (low amplitude) applied in a short period of time or low power applied in a prolonged time. These conditions allowed an ultrasonic probe to act on releasing bioactive compounds without degrading them. All three rheological models were suitable, with the Power Law model being the most appropriate, exhibiting non-Newtonian pseudoplastic behavior.


Assuntos
Reologia , Annona/química , Sucos de Frutas e Vegetais/análise , Carotenoides/química , Viscosidade , Ondas Ultrassônicas , Sonicação , Fenóis/química , Ácido Ascórbico/química
2.
Methods Mol Biol ; 2788: 3-18, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656505

RESUMO

Carotenoids are the natural pigments available in nature and exhibit different colors such as yellow, red, and orange. These are a class of phytonutrients that have anti-cancer, anti-inflammatory, anti-oxidant, immune-modulatory, and anti-aging properties. These were used in food, pharmaceutical, nutraceutical, and cosmetic industries. They are divided into two classes: carotenes and xanthophylls. The carotenes are non-oxygenated derivatives and xanthophylls are oxygenated derivatives. The major source of carotenoids are vegetables, fruits, and tissues. Carotenoids also perform the roles of photoprotection and photosynthesis. In addition to the roles mentioned above, they are also involved and act as precursor molecules for the biosynthesis of phytohormones such as strigolactone and abscisic acid. This chapter briefly introduces carotenoids and their extraction method from plant tissue. Proposed protocol describes the extraction of carotenoid using solvents chloroform and dichloromethane. Reverse-phase HPLC can be performed with C30 columns using gradient elution. The column C30 is preferred to the C18 column because the C30 column has salient features, which include selective nature in the separation of structural isomers and hydrophobic, long-chain compounds, and shows the best compatibility with highly aqueous mobile phases. A complete pipeline for the extraction of carotenoids from plant tissue is given in the present protocol.


Assuntos
Carotenoides , Carotenoides/isolamento & purificação , Carotenoides/química , Carotenoides/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Plantas/química , Plantas/metabolismo , Extratos Vegetais/química
3.
Chem Biol Drug Des ; 103(2): e14467, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38661582

RESUMO

Paclitaxel (PTX) is one of the first-line chemotherapeutic agents for treating breast cancer. However, PTX resistance remains a major hurdle in breast cancer therapy. Crocin, the main chemical constituent of saffron, shows anti-cancer activity against various types of cancer. However, the effect of crocin on the resistance of PTX in breast cancer is still unknown. CCK-8 and TUNEL assays were employed to detect cell viability and apoptosis, respectively. The targets of crocin were predicted using HERB database and the targets associated with breast cancer were acquired using GEPIA database. The Venn diagram was utilized to identify the common targets between crocin and breast cancer. Baculoviral inhibitor of apoptosis repeat containing 5 (BIRC5) expression was detected by qRT-PCR and western blot analysis. The correlation between BIRC5 expression and survival was analyzed by Kaplan-Meier plotter and PrognoScan databases. Our data suggested that crocin aggravated PTX-induced decrease of viability and increase of apoptosis in MCF-7 and MCF-7/PTX cells. BIRC5 was identified as the target of crocin against breast cancer. Crocin inhibited BIRC5 expression in MCF-7 and MCF-7/PTX cells. BIRC5 is overexpressed in breast cancer tissues, as well as PTX-sensitive and PTX-resistant breast cancer cells. BIRC5 expression is related to the poor survival of patients with breast cancer. Depletion of BIRC5 strengthened PTX-induced viability reduction and promotion of apoptosis in MCF-7 and MCF-7/PTX cells. Moreover, BIRC5 overexpression reversed the inhibitory effect of crocin on PTX resistance in breast cancer cells. In conclusion, crocin enhanced the sensitivity of PTX in breast cancer cells partially through inhibiting BIRC5 expression.


Assuntos
Apoptose , Neoplasias da Mama , Carotenoides , Paclitaxel , Survivina , Humanos , Paclitaxel/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Survivina/metabolismo , Survivina/genética , Carotenoides/farmacologia , Carotenoides/química , Células MCF-7 , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral
4.
Phys Chem Chem Phys ; 26(13): 10225-10233, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38497307

RESUMO

This study delves into the pH-dependent effects on the excited-state behavior of crocin, a hydrophilic carotenoid with diverse functions in biological systems. Steady-state spectroscopy demonstrates notable changes in absorption and fluorescence spectra, characterized by a pH-dependent blue shift and altered resolution of vibrational bands. Transient absorption spectra further elucidate these effects, highlighting a significant blue shift in the S1-Sn peak with increasing pH. Detailed kinetic analysis shows the pH-dependent dynamics of crocin's excited states. At pH 11, a shortening of effective conjugation is observed, resulting in a prolonged S1/ICT lifetime. Conversely, at pH 9, our data suggest a more complex scenario, suggesting the presence of two distinct crocin species with different relaxation patterns. This implies structural alterations within the crocin molecule, potentially linked to the deprotonation of hydroxyl groups in crocin and/or saponification at high pH.


Assuntos
Carotenoides , Cinética , Análise Espectral , Carotenoides/química , Concentração de Íons de Hidrogênio
5.
Anal Bioanal Chem ; 416(10): 2553-2564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38459965

RESUMO

Crocin-I, a valuable natural compound found in saffron (Crocus sativus L.), is the most abundant among the various crocin structures. Developing a cost-effective and scalable purification process to produce high-purity crocin-I is of great interest for future investigations into its biological properties and its potential applications in the treatment of neurological disorders. However purifying crocin-I through single-column preparative chromatography (batch) poses a yield-purity trade-off due to structural similarities among crocins, meaning that the choice of the collection window sacrifices either yield in benefit of higher purity or vice versa. This study demonstrates how the continuous countercurrent operating mode resolves this dilemma. Herein, a twin-column MCSGP (multicolumn countercurrent solvent gradient purification) process was employed to purify crocin-I. This study involved an environmentally friendly ethanolic extraction of saffron stigma, followed by an investigation into the stability of the crocin-I within the feed under varying storage conditions to ensure a stable feed composition during the purification. Then, the batch purification process was initially designed, optimized, and subsequently followed by the scale-up to the MCSGP process. To ensure a fair comparison, both processes were evaluated under similar conditions (e.g., similar total column volume). The results showed that, at a purity grade of 99.7%, the MCSGP technique demonstrated significant results, namely + 334% increase in recovery + 307% increase in productivity, and - 92% reduction in solvent consumption. To make the purification process even greener, the only organic solvent employed was ethanol, without the addition of any additive. In conclusion, this study presents the MCSGP as a reliable, simple, and economical technique for purifying crocin-I from saffron extract, demonstrating for the first time that it can be effectively applied as a powerful approach for process intensification in the purification of natural products from complex matrices.


Assuntos
Distribuição Contracorrente , Crocus , Distribuição Contracorrente/métodos , Solventes/química , Carotenoides/química , Etanol/química
6.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542168

RESUMO

Crocin is a unique water-soluble carotenoid found in crocus and gardenia flowers. Crocin has been shown to have a variety of pharmacological activities, such as antioxidant, anti-cancer, memory improvement, antidepressant, anti-ischemia, blood pressure lowering and aphrodisiac, gene protection and detoxification activities. Due to their amphiphilicity, crocin molecules form concentration-dependent self-associates (micelles) in a water solution. In the present study, using various NMR techniques (T2 relaxation and selective gradient NOESY), we have demonstrated that crocin forms mixed micelles with water-soluble drug delivery system glycyrrhizin and linoleic acid molecules. Note, that the spin-spin T2 relaxation time and NOESY spectroscopy are very sensitive to intermolecular interactions and molecular diffusion mobility. The second purpose of this work was the elucidation of the interaction of crocin with a model lipid membrane using NMR techniques and a molecular dynamics simulation and its effects on lipid oxidation. It was shown that the crocin molecule is located near the surface of the lipid bilayer and effectively protects lipids from oxidation by peroxyl radicals. The role of glycyrrhizin and vitamin C in metal-induced lipid oxidation was also elucidated. The results of this study may be useful for expanding the field of application of crocin in medicine and in the food industry.


Assuntos
Antioxidantes , Crocus , Antioxidantes/farmacologia , Antioxidantes/química , Micelas , Água , Ácido Glicirrízico/farmacologia , Carotenoides/farmacologia , Carotenoides/química , Lipídeos , Crocus/química
7.
Food Chem ; 446: 138892, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432136

RESUMO

Growing research confirms that lipid transport proteins play a key role in the trans-intestinal epithelial transport of carotenoids. In this study, to simultaneously improve the digestive stability and intestinal absorption of fucoxanthin (FX), functionalized vectors with a capability of up-regulating the expression of FX-specific lipid transporter proteins was fabricated. The results showed that myristic acid, palmitic acid, and stearic acid effectively promoted FX-specific lipid transporter protein expression and formed stable self-assembly complexes with Millard-modified zein (MZ). The FX was sufficiently encapsulated in the MZ-fatty acid (FA) particles, forming spherical nanoparticles with a "core-shell" structure. Simulated gastrointestinal digestion showed that FA introduction significantly increased the FX bioaccessibility. In vivo results further verified that adding FAs dramatically increased the FX serum response concentration. These findings suggest that incorporating nutrients that can promote lipid transporter protein expression into delivery vehicles should be an effective strategy for improving oral carotenoid absorption.


Assuntos
Zeína , Ácidos Graxos , Xantofilas/química , Carotenoides/química , Proteínas de Transporte
8.
Food Chem ; 448: 139061, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537550

RESUMO

Recently, deep eutectic solvents (DES) have been extensively researched as a more biocompatible and efficient alternative to conventional solvents for extracting pigments from natural resources. The efficiency of DES extraction for the anthocyanin and carotenoid can be enhanced by microwave-assisted extraction (MAE) and/or ultrasound-assisted extraction (UAE) techniques. Apart from the extraction efficiency, the toxicity and recovery of the pigments and their bioavailability are crucial for potential applications. A plethora of studies have explored the extraction efficiency, toxicity, and recovery of pigments from various natural plant-based matrices using DES. Nevertheless, a detailed review of the deep eutectic solvent extraction of natural pigments has not been reported to date. Additionally, the toxicity, safety, and bioavailability of the extracted pigments, and their potential applications are not thoroughly documented. Therefore, this review is designed to understand the aforementioned concepts in using DES for anthocyanin and carotenoid extraction.


Assuntos
Antocianinas , Carotenoides , Solventes Eutéticos Profundos , Química Verde , Extratos Vegetais , Antocianinas/química , Antocianinas/isolamento & purificação , Carotenoides/química , Carotenoides/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Solventes Eutéticos Profundos/química , Fracionamento Químico/métodos , Micro-Ondas
9.
Molecules ; 29(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542865

RESUMO

Carotenoids are hydrophobic pigments produced exclusively by plants, fungi, and specific microbes. Microalgae are well suited for the production of valuable carotenoids due to their rapid growth, efficient isoprenoid production pathway, and ability to store these compounds within their cells. The possible markets for bio-products range from feed additives in aquaculture and agriculture to pharmaceutical uses. The production of carotenoids in microalgae is affected by several environmental conditions, which can be utilized to enhance productivity. The current study focused on optimizing the extraction parameters (time, temperature, and extraction number) to maximize the yield of carotenoids. Additionally, the impact of various nitrogen sources (ammonia, nitrate, nitrite, and urea) on the production of lutein and loroxanthin in Scenedesmus obliquus was examined. To isolate the carotenoids, 0.20 g of biomass was added to 0.20 g of CaCO3 and 10.0 mL of ethanol solution containing 0.01% (w/v) pyrogallol. Subsequently, the extraction was performed using an ultrasonic bath for a duration of 10 min at a temperature of 30 °C. This was followed by a four-hour saponification process using a 10% methanolic KOH solution. The concentration of lutein and loroxanthin was measured using HPLC-DAD at 446 nm, with a flow rate of 1.0 mL/min using a Waters YMC C30 Carotenoid column (4.6 × 250 mm, 5 µm). The confirmation of carotenoids after their isolation using preparative chromatography was achieved using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with an atmospheric pressure chemical ionization (APCI) probe and UV-vis spectroscopy. In summary, S. obliquus shows significant promise for the large-scale extraction of lutein and loroxanthin. The findings of this study provide strong support for the application of this technology to other species.


Assuntos
Microalgas , Scenedesmus , Luteína/química , Scenedesmus/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Carotenoides/química , Microalgas/metabolismo
10.
Int J Biol Macromol ; 265(Pt 2): 131028, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521321

RESUMO

Photodamage to the photosynthetic apparatus by excessive light radiation has led to the evolution of a variety of energy dissipation mechanisms. A mechanism that exists in some cyanobacterial species, enables non-photochemical quenching of excitation energy within the phycobilisome (PBS) antenna complex by the Orange Carotenoid Protein (OCP). The OCP contains an active N-terminal domain (NTD) and a regulatory C-terminal domain (CTD). Some cyanobacteria also have genes encoding for homologs to both the CTD (CTDH) and the NTD (referred to as helical carotenoid proteins, HCP). The CTDH facilitates uptake of carotenoids from the thylakoid membranes to be transferred to the HCPs. Holo-HCPs exhibit diverse functionalities such as carotenoid carriers, singlet oxygen quenchers, and in the case of HCP4, constitutive OCP-like energy quenching. Here, we present the first crystal structure of the holo-HCP4 binding canthaxanthin molecule and an improved structure of the apo-CTDH from Anabaena sp. PCC 7120. We propose here models of the binding of the HCP4 to the PBS and the associated energy quenching mechanism. Our results show that the presence of the carotenoid is essential for fluorescence quenching. We also examined interactions within OCP-like species, including HCP4 and CTDH, providing the basis for mechanisms of carotenoid transfer from CTDH to HCPs.


Assuntos
Anabaena , Cianobactérias , Proteínas de Bactérias/química , Carotenoides/química , Cianobactérias/metabolismo , Cantaxantina , Anabaena/metabolismo , Ficobilissomas/química
11.
Phys Chem Chem Phys ; 26(9): 7865-7876, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38376442

RESUMO

Carotenoids are very effectively delivered by albumin to adipocytes. The uptake of carotenoids to the cells occurs in the form of self-aggregates that localize in the vicinity of the adipocyte membrane, as shown by high spatial resolution Raman spectroscopy. The binding of carotenoids to albumin and the mechanism of their transport were elucidated with the help of chiroptical spectroscopies, in tandem with molecular docking and molecular dynamics simulations. In particular, apart from the recognized high affinity pocket of albumin that binds a carotenoid monomer in domain I, we have identified a hydrophobic periphery area in domain IIIB that loosely bounds the self-aggregated carotenoid in aqueous media and enables its easy detachment in hydrophobic environments. This explains the effectiveness of albumins as nanocarriers of carotenoids to adipocytes in vitro.


Assuntos
Albuminas , Carotenoides , Carotenoides/química , Simulação de Acoplamento Molecular , Transporte Biológico , Adipócitos/metabolismo , Análise Espectral Raman/métodos
12.
Photosynth Res ; 159(2-3): 291-301, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38315423

RESUMO

Measurement of photosensitized luminescence of singlet oxygen has been applied to studies of singlet oxygen generation and quenching by C40 carotenoids (neurosporene, lycopene, rhodopin, and spirilloxanthin) with long chain of conjugated double bonds (CDB) using hexafluorobenzene as a solvent. It has been found that neurosporene, lycopene, and rhodopin are capable of the low efficient singlet oxygen generation in aerated solutions upon photoexcitation in the spectral region of their main absorption maxima. The quantum yield of this process was estimated to be (1.5-3.0) × 10-2. This value is near the singlet oxygen yields in solutions of ζ-carotene (7 CDB) and phytoene (3 CDB) and many-fold smaller than in solutions of phytofluene (5 CDB) (Ashikhmin et al. Biochemistry (Mosc) 85:773-780, https://doi.org/10.1134/S0006297920070056 , 2020, Biochemistry (Mosc) 87:1169-1178, 2022, https://doi.org/10.1134/S00062979221001082022 ). Photogeneration of singlet oxygen was not observed in spirilloxanthin solutions. A correlation was found between the singlet oxygen yields and the quantum yields and lifetimes of the fluorescence of the carotenoid molecules. All carotenoids were shown to be strong physical quenchers of singlet oxygen. The rate constants of 1O2 quenching by the carotenoids with long chain of CDB (9-13) were close to the rate constant of the diffusion-limited reactions ≈1010 M-1 s-1, being many-fold greater than the rate constants of 1O2 quenching by the carotenoids with the short chain of CDB (3-7) phytoene, phytofluene, and ζ-carotene studied in prior papers of our group (Ashikhmin et al. 2020, 2022). To our knowledge, the quenching rate constants of rhodopin and spirilloxanthin have been obtained in this paper for the first time. The mechanisms of 1O2 photogeneration by carotenoids in solution and in the LH2 complexes of photosynthetic cells, as well as the efficiencies of their protective action are discussed.


Assuntos
Oxigênio Singlete , zeta Caroteno , Licopeno , Carotenoides/química , Oxigênio , Bactérias , Xantofilas
13.
Food Res Int ; 179: 114011, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342519

RESUMO

This comprehensive review article delves into the complex world of natural edible pigments, with a primary focus on their stability and the factors that influence them. The study primarily explores four classes of pigments: anthocyanins, betalains, chlorophylls and carotenoids by investigating both their intrinsic and extrinsic stability factors. The review examines factors affecting the stability of anthocyanins which act as intrinsic factors like their structure, intermolecular and intramolecular interactions, copigmentation, and self-association as well as extrinsic factors such as temperature, light exposure, metal ions, and enzymatic activities. The scrutiny extends to betalains which are nitrogen-based pigments, and delves into intrinsic factors like chemical composition and glycosylation, as well as extrinsic factors like temperature, light exposure, and oxygen levels affecting for their stability. Carotenoids are analyzed concerning their intrinsic and extrinsic stability factors. The article emphasizes the role of chemical structure, isomerization, and copigmentation as intrinsic factors and discusses how light, temperature, oxygen, and moisture levels influence carotenoid stability. The impacts of food processing methods on carotenoid preservation are explored by offering guidance on maximizing retention and nutritional value. Chlorophyll is examined for its sensitivity to external factors like light, temperature, oxygen exposure, pH, metal ions, enzymatic actions, and the food matrix composition. In conclusion, this review article provides a comprehensive exploration of the stability of natural edible pigments, highlighting the intricate interplay of intrinsic and extrinsic factors. In addition, it is important to note that all the references cited in this review article are within the past five years, ensuring the most up-to-date and relevant sources have been considered in the analysis.


Assuntos
Antocianinas , Alimentos Orgânicos , Antocianinas/análise , Alimentos Orgânicos/análise , Carotenoides/química , Betalaínas/química , Clorofila/química , Íons , Oxigênio
14.
FEBS Lett ; 598(5): 571-578, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38373744

RESUMO

Strigolactones (SLs) play a crucial role in regulating plant architecture and mediating rhizosphere interactions. They are synthesized from all-trans-ß-carotene converted into the intermediate carlactone (CL) via the intermediate 9-cis-ß-apo-10'-carotenal. Recent studies indicate that plants can also synthesize 3-OH-CL from all-trans-ß-zeaxanthin via the intermediate 9-cis-3-OH-ß-apo-10'-carotenal. However, the question of whether plants can form bioactive SLs from 9-cis-3-OH-ß-apo-10'-carotenal remains elusive. In this study, we supplied the 13 C-labeled 9-cis-3-OH-ß-apo-10'-carotenal to rice seedlings and monitored the synthesis of SLs using liquid chromatography-mass spectrometry (LC-MS) and Striga bioassay. We further validated the biological activity of 9-cis-3-OH-ß-apo-10'-carotenal-derived SLs using the ccd7/d17 SL-deficient mutant, which demonstrated increased Striga seed-germinating activity and partial rescue of tiller numbers and plant height. Our results establish 9-cis-3-OH-ß-apo-10'-carotenal as a significant SL biosynthetic intermediate with implications for understanding plant hormonal functions and potential applications in agriculture.


Assuntos
Compostos Heterocíclicos com 3 Anéis , Oryza , Oryza/genética , Carotenoides/química , beta Caroteno , Lactonas
15.
J Am Chem Soc ; 146(6): 3984-3991, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38236721

RESUMO

The light-harvesting antennae of diatoms and spinach are composed of similar chromophores; however, they exhibit different absorption wavelengths. Recent advances in cryoelectron microscopy have revealed that the diatom light-harvesting antenna fucoxanthin chlorophyll a/c-binding protein (FCPII) forms a tetramer and differs from the spinach antenna in terms of the number of protomers; however, the detailed molecular mechanism remains elusive. Herein, we report the physicochemical factors contributing to the characteristic light absorption of the diatom light-harvesting antenna based on spectral calculations using an exciton model. Spectral analysis reveals the significant contribution of unique fucoxanthin molecules (fucoxanthin-S) in FCPII to the diatom-specific spectrum, and further analysis determines their essential role in excitation-energy transfer to chlorophyll. It was revealed that the specificity of these fucoxanthin-S molecules is caused by the proximity between protomers associated with the tetramerization of FCPII. The findings of this study demonstrate that diatoms employ fucoxanthin-S to harvest energy under the ocean in the absence of long-wavelength sunlight and can provide significant information about the survival strategies of photosynthetic organisms to adjust to their living environment.


Assuntos
Carotenoides , Diatomáceas , Xantofilas , Carotenoides/química , Clorofila A , Diatomáceas/química , Microscopia Crioeletrônica , Subunidades Proteicas/metabolismo , Clorofila/química , Complexos de Proteínas Captadores de Luz/química , Transferência de Energia , Proteínas de Ligação à Clorofila/química , Proteínas de Ligação à Clorofila/metabolismo
16.
Food Chem ; 442: 138530, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38271911

RESUMO

Orange peels contain a considerable number of bioactive compounds such as carotenoids, that can be used as ingredients in high-value products. The aim of this study was to compare orange peel extracts obtained with different green solvents (vegetable oils, fatty acids, and deep eutectic solvents (DES)). In addition, the chemical characterization of a new hydrophobic DES formed by octanoic acid and l-proline (C8:Pro) was performed. The extracts were compared in terms of carotenoid extraction, antioxidant activity by three methods, color, and environmental impact. The results confirmed that the mixture of C8:Pro is a DES and showed the highest carotenoid extraction (46.01 µg/g) compared to hexane (39.28 µg/g). The antioxidant activity was also the highest in C8:Pro (2438.8 µM TE/mL). Finally, two assessment models were used to evaluate the greenness and sustainability of the proposed extractions. These results demonstrated the potential use of orange peels in the circular economy and industry.


Assuntos
Antioxidantes , Citrus sinensis , Solventes/química , Antioxidantes/química , Citrus sinensis/química , Carotenoides/química , Extratos Vegetais/química
17.
Nat Commun ; 15(1): 847, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286840

RESUMO

In plants, light-harvesting complexes serve as antennas to collect and transfer the absorbed energy to reaction centers, but also regulate energy transport by dissipating the excitation energy of chlorophylls. This process, known as nonphotochemical quenching, seems to be activated by conformational changes within the light-harvesting complex, but the quenching mechanisms remain elusive. Recent spectroscopic measurements suggest the carotenoid S* dark state as the quencher of chlorophylls' excitation. By investigating lutein embedded in different conformations of CP29 (a minor antenna in plants) via nonadiabatic excited state dynamics simulations, we reveal that different conformations of the complex differently stabilize the lutein s-trans conformer with respect to the dominant s-cis one. We show that the s-trans conformer presents the spectroscopic signatures of the S* state and rationalize its ability to accept energy from the closest excited chlorophylls, providing thus a relationship between the complex's conformation and the nonphotochemical quenching.


Assuntos
Complexos de Proteínas Captadores de Luz , Luteína , Luteína/química , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/química , Carotenoides/química , Clorofila/química , Plantas
18.
J Basic Microbiol ; 64(2): e2300330, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37847881

RESUMO

Microorganisms that can survive in saline environments, known as halotolerant or halophilic organisms, have a wide range of current and potential uses in biotechnology. In this study, it was aimed to determine the carotenoids of halophilic archaea strains isolated from the brine samples taken from different points of Salt Lake (Turkey) and determine the antioxidant activities of their carotenoids. To identify the halophilic archaea strains, they were cultivated in MAM JCM 168 medium and subjected to antibiotic susceptibility, fatty acid, two-dimensional and three-dimensional imaging by scanning electron microscopy and atomic force microscopy, biochemical and phylogenetic assays. The findings show that five different halophilic archaea strains have been identified as Halorubrum lipolyticum, Halorubrum sodomense, Haloarcula salaria, Halorubrum chaoviator, and Haloarcula japonica with 98% and above similarity ratio. The main fatty acids of all haloarchaeal strains were octadecanoic acid (C18:0) and palmitic acid (C16:0). The major carotenoid of the species was determined as all-trans bacterioruberin, and different carotenoid types such as lycopene, ß-carotene, and 2-isopentenyl-3,4-dehydrorodopin were found as well as bacterioruberin isomers. The antioxidant activities of carotenoids extracted from the species were analyzed by the 2,2-diphenyl-1-picrylhydrazyl radical scavenging method and the extracts showed antioxidant activity statistically significantly higher than ascorbic acid and butylated hydroxytoluene as reference products (p < 0.05).


Assuntos
Antioxidantes , Halorubrum , Antioxidantes/farmacologia , Antioxidantes/química , Ácidos Graxos , Filogenia , Carotenoides/química
19.
Int J Biol Macromol ; 254(Pt 2): 127874, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939760

RESUMO

The Orange Carotenoid Protein (OCP) is a unique photoreceptor crucial for cyanobacterial photoprotection. Best studied Synechocystis sp. PCC 6803 OCP belongs to the large OCP1 family. Downregulated by the Fluorescence Recovery Protein (FRP) in low-light, high-light-activated OCP1 binds to the phycobilisomes and performs non-photochemical quenching. Recently discovered families OCP2 and OCP3 remain structurally and functionally underexplored, and no systematic comparative studies have ever been conducted. Here we present two first crystal structures of OCP2 from morphoecophysiologically different cyanobacteria and provide their comprehensive structural, spectroscopic and functional comparison with OCP1, the recently described OCP3 and all-OCP ancestor. Structures enable correlation of spectroscopic signatures with the effective number of hydrogen and discovered here chalcogen bonds anchoring the ketocarotenoid in OCP, as well as with the rotation of the echinenone's ß-ionone ring in the CTD. Structural data also helped rationalize the observed differences in OCP/FRP and OCP/phycobilisome functional interactions. These data are expected to foster OCP research and applications in optogenetics, targeted carotenoid delivery and cyanobacterial biomass engineering.


Assuntos
Proteínas de Bactérias , Synechocystis , Proteínas de Bactérias/química , Synechocystis/metabolismo , Análise Espectral , Carotenoides/química , Ficobilissomas/química
20.
Biochim Biophys Acta Bioenerg ; 1865(1): 149016, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832862

RESUMO

Quenching of chlorophyll triplet states by carotenoids is an essential photoprotective process, which prevents formation of reactive singlet oxygen in photosynthetic light-harvesting complexes. The process is usually very efficient in oxygenic organisms under physiological conditions, thus preventing any observable accumulation of chlorophyll triplets. However, it subsequently prevents also the determination of the triplet transfer rate. Here we report results of nanosecond transient absorption spectroscopy on photosystem I core complexes, where a major part of chlorophyll a triplet states (~60 %) accumulates on a nanosecond time scale at ambient temperature. As a consequence, the triplet energy transfer could be resolved and the transfer time was determined to be about 24 ns. A smaller fraction of chlorophyll a triplet states (~40 %) is quenched with a faster rate, which could not be determined. Our analysis indicates that these chlorophylls are in direct contact with carotenoids. The overall chlorophyll triplet yield in the core antenna was estimated to be ~0.3 %, which is a value two orders of magnitude smaller than in most other photosynthetic light-harvesting complexes. This explains why slower quenching of chlorophyll triplet states is sufficient for photoprotection of photosystem I. Nevertheless, the core antenna of photosystem I represents one of only few photosynthetic complexes of oxygenic organisms in which the quenching rate of the majority of chlorophyll triplets can be directly monitored under physiological temperature.


Assuntos
Carotenoides , Complexo de Proteína do Fotossistema I , Carotenoides/química , Clorofila A , Complexos de Proteínas Captadores de Luz/metabolismo , Clorofila/química , Oxigênio , Transferência de Energia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...